Skip to content
Snippets Groups Projects
math.html 5.55 KiB
Newer Older
  • Learn to ignore specific revisions
  • <!doctype html>
    <html lang="en">
    
    	<head>
    		<meta charset="utf-8">
    
    		<title>reveal.js - The HTML Presentation Framework</title>
    
    		<meta name="description" content="A framework for easily creating beautiful presentations using HTML">
    		<meta name="author" content="Hakim El Hattab">
    
    		<meta name="apple-mobile-web-app-capable" content="yes" />
    		<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent" />
    
    		<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">
    
    		<link rel="stylesheet" href="../css/reveal.min.css">
    
    		<link rel="stylesheet" href="../css/theme/night.css" id="theme">
    
    
    		<!-- For syntax highlighting -->
    		<link rel="stylesheet" href="../lib/css/zenburn.css">
    
    		<!--[if lt IE 9]>
    		<script src="lib/js/html5shiv.js"></script>
    		<![endif]-->
    	</head>
    
    	<body>
    
    		<div class="reveal">
    
    			<div class="slides">
    
    				<section>
    
    					<h2>reveal.js Math Plugin</h2>
    					<p>A thin wrapper for MathJax</p>
    
    				</section>
    
    				<section>
    
    					<h3>The Lorenz Equations</h3>
    
    					\[\begin{aligned}
    					\dot{x} &amp; = \sigma(y-x) \\
    					\dot{y} &amp; = \rho x - y - xz \\
    					\dot{z} &amp; = -\beta z + xy
    					\end{aligned} \]
    				</section>
    
    
    				<section>
    
    					<h3>The Cauchy-Schwarz Inequality</h3>
    
    Hakim El Hattab's avatar
    Hakim El Hattab committed
    					<script type="math/tex; mode=display">
    						\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
    					</script>
    
    				</section>
    
    				<section>
    
    					<h3>A Cross Product Formula</h3>
    
    
    					\[\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix}
    					\mathbf{i} &amp; \mathbf{j} &amp; \mathbf{k} \\
    					\frac{\partial X}{\partial u} &amp;  \frac{\partial Y}{\partial u} &amp; 0 \\
    					\frac{\partial X}{\partial v} &amp;  \frac{\partial Y}{\partial v} &amp; 0
    					\end{vmatrix}  \]
    				</section>
    
    				<section>
    
    					<h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>
    
    					\[P(E)   = {n \choose k} p^k (1-p)^{ n-k} \]
    				</section>
    
    				<section>
    					<h3>An Identity of Ramanujan</h3>
    
    
    					\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
    					1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
    					{1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
    				</section>
    
    
    				<section>
    					<h3>A Rogers-Ramanujan Identity</h3>
    
    					\[  1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
    					\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
    				</section>
    
    				<section>
    					<h3>Maxwell&#8217;s Equations</h3>
    
    					\[  \begin{aligned}
    					\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} &amp; = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} &amp; = 4 \pi \rho \\
    					\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} &amp; = \vec{\mathbf{0}} \\
    					\nabla \cdot \vec{\mathbf{B}} &amp; = 0 \end{aligned}
    					\]
    				</section>
    
    
    				<section>
    					<section>
    						<h3>The Lorenz Equations</h3>
    
    						<div class="fragment">
    							\[\begin{aligned}
    							\dot{x} &amp; = \sigma(y-x) \\
    							\dot{y} &amp; = \rho x - y - xz \\
    							\dot{z} &amp; = -\beta z + xy
    							\end{aligned} \]
    						</div>
    					</section>
    
    					<section>
    						<h3>The Cauchy-Schwarz Inequality</h3>
    
    						<div class="fragment">
    							\[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \]
    						</div>
    					</section>
    
    					<section>
    						<h3>A Cross Product Formula</h3>
    
    						<div class="fragment">
    							\[\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix}
    							\mathbf{i} &amp; \mathbf{j} &amp; \mathbf{k} \\
    							\frac{\partial X}{\partial u} &amp;  \frac{\partial Y}{\partial u} &amp; 0 \\
    							\frac{\partial X}{\partial v} &amp;  \frac{\partial Y}{\partial v} &amp; 0
    							\end{vmatrix}  \]
    						</div>
    					</section>
    
    					<section>
    						<h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>
    
    						<div class="fragment">
    							\[P(E)   = {n \choose k} p^k (1-p)^{ n-k} \]
    						</div>
    					</section>
    
    					<section>
    						<h3>An Identity of Ramanujan</h3>
    
    						<div class="fragment">
    							\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
    							1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
    							{1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
    						</div>
    					</section>
    
    					<section>
    						<h3>A Rogers-Ramanujan Identity</h3>
    
    						<div class="fragment">
    							\[  1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
    							\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
    						</div>
    					</section>
    
    					<section>
    						<h3>Maxwell&#8217;s Equations</h3>
    
    						<div class="fragment">
    							\[  \begin{aligned}
    							\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} &amp; = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} &amp; = 4 \pi \rho \\
    							\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} &amp; = \vec{\mathbf{0}} \\
    							\nabla \cdot \vec{\mathbf{B}} &amp; = 0 \end{aligned}
    							\]
    						</div>
    					</section>
    				</section>
    
    
    			</div>
    
    		</div>
    
    		<script src="../lib/js/head.min.js"></script>
    		<script src="../js/reveal.min.js"></script>
    
    		<script>
    
    			Reveal.initialize({
    
    					// mathjax: 'http://cdn.mathjax.org/mathjax/latest/MathJax.js',
    
    					config: 'TeX-AMS_HTML-full'
    
    				dependencies: [
    
    Hakim El Hattab's avatar
    Hakim El Hattab committed
    					{ src: '../lib/js/classList.js' },
    
    					{ src: '../plugin/math/math.js', async: true }
    				]
    			});
    
    		</script>
    
    	</body>
    </html>